Performance Analysis for Sparse Support Recovery
نویسندگان
چکیده
منابع مشابه
Performance Limits of Sparse Support Recovery Algorithms
Compressed Sensing (CS) is a signal acquisition approach aiming to reduce the number of measurements required to capture a sparse (or, more generally, compressible) signal. Several works have shown significant performance advantages over conventional sampling techniques, through both theoretical analyses and experimental results, and have established CS as an efficient way to acquire and recons...
متن کاملPerformance of Jointly Sparse Support Recovery in Compressed Sensing
The problem of jointly sparse support recovery is to determine the common support of jointly sparse signal vectors from multiple measurement vectors (MMV) related to the signals by a linear transformation. The fundamental limit of performance has been studied in terms of a so-called algebraic bound, relating the maximum recoverable sparsity level to the spark of the sensing matrix and the rank ...
متن کاملExact Support Recovery for Sparse Spikes Deconvolution
This paper studies sparse spikes deconvolution over the space of measures. For non-degenerate sums of Diracs, we show that, when the signalto-noise ratio is large enough, total variation regularization (which the natural extension of ` norm of vector to the setting of measures) recovers the exact same number of Diracs. We also show that both the locations and the heights of these Diracs converg...
متن کاملSupport Recovery of Sparse Signals
We consider the problem of exact support recovery of sparse signals via noisy measurements. The main focus is the sufficient and necessary conditions on the number of measurements for support recovery to be reliable. By drawing an analogy between the problem of support recovery and the problem of channel coding over the Gaussian multiple access channel, and exploiting mathematical tools develop...
متن کاملSparse Support Recovery with Phase-Only Measurements
Sparse support recovery (SSR) is an important part of the compressive sensing (CS). Most of the current SSR methods are with the full information measurements. But in practice the amplitude part of the measurements may be seriously destroyed. The corrupted measurements mismatch the current SSR algorithms, which leads to serious performance degeneration. This paper considers the problem of SSR w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2010
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2009.2039039